Abstract

The influence of fluoride and shielding gas (O2 or Ar) on the physical and spectroscopic properties of Er3+ doped TeO2-ZnO-ZnF2 glass system is investigated. The larger electronegativity of F than O accounts for the gradual decrease of refractive index, density, and J-O parameters with increasing ZnF2. An analysis on Fourier transform infrared transmission spectra reveals that the absorption coefficient of OH− around 3 μm as low as 0.247 cm−1 can be achieved when 30 mol% ZnF2 containing sample is treated with Ar gas during glass melting process. The reduction of OH− groups combined with the low multiphonon relaxation rate (207 s−1) contributes to the enhanced emissions at 1.5 and 2.7 μm, along with prolonged lifetimes of 4I11/2 and 4I13/2 levels. A high branching ratio (17.95%) corresponding to the Er3+: 4I11/2 → 4I13/2 transition, the large absorption and emission cross section (0.44 × 10−20 cm2 and 0.45 × 10−20 cm2), and good gain cross section demonstrate that oxyfluoride tellurite glass could be a promising material for a diode-pump 2.7 μm fiber laser.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.