Abstract
Compact layers (CLs) characterized by dense structures play a crucial role in enhancing the power conversion efficiency (PCE) of dye-sensitized solar cells (DSSCs). Previous studies focus on preparing CLs using a single precursor through one-step methods. In this study, the new CLs are prepared by sequentially depositing films using titanium tetrachloride and titanium diisopropoxide bis(acetylacetonate) via chemical bath deposition and spray pyrolysis, respectively. Scanning electron microscope images show that the resulting CL has a denser structure compared to those prepared by one-step methods. Moreover, electrochemical impedance analysis indicates that they can efficiently inhibit charge recombination at the interface, leading to higher PCE. Furthermore, when the CL and direct contact (DC) structure are applied simultaneously to fabricate the DSSCs using Y123 dye and Co2+/3+ electrolyte, efficiencies of 9.86 % and 24.74 % can be obtained respectively, under one-sun and room light conditions (200 lx). Additionally, tandem cells using the DC structure for both top and bottom cells can achieve an efficiency of 29.68 % under room light illumination of 200 lx.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.