Abstract

Free-hand sketches are appealing for humans as a universal tool to depict the visual world. Humans can recognize varied sketches of a category easily by identifying the concurrence and layout of the intrinsic semantic components of the category, since humans draw free-hand sketches based a common consensus that which types of semantic components constitute each sketch category. For example, an airplane should at least have a fuselage and wings. Based on this analysis, a semantic component-level memory module is constructed and embedded in the proposed structured sketch recognition network in this paper. The memory keys representing semantic components of each sketch category can be self-learned and enhance the recognition network's explainability. Our proposed networks can deal with different situations of sketch recognition, i.e., with or without semantic components labels of strokes. Experiments on the SPG and SketchIME datasets demonstrate the memory module's flexibility and the recognition network's explainability. The code and data are available at https://github.com/GuangmingZhu/SketchESC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.