Abstract

Nowadays, radar-based human activity classification is being widely adopted in healthcare systems due to its benefits in terms of personal privacy compliance, non-contact sensing, and being unaffected by weather conditions. This study proposes a threshold method in the pre-processing stage to improve human activity classification accuracy by determining the region of meaningful information (RMI) on the spectrogram. Initially, a mask function, which is created by a certain threshold value, is applied to the input spectrogram to highlight the RMI from the micro-Doppler (m-D) signatures. Only the highlighted RMI on the spectrogram is retained as input to the classifiers. Then, five Convolutional Neural Networks (CNNs) of varying complexity are employed to extract features, identify activities, and assess the effectiveness of the suggested approach. The experimental results demonstrate that the suggested approach has enhanced classification accuracy by up to 11% when compared to the original unprocessed dataset.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call