Abstract

Kidney organoids are heterocellular structures grown in vitro that resemble nephrons. Organoids contain diverse cell types, including podocytes, proximal tubules, and distal tubules in contiguous segments, patterned along a proximal-to-distal axis. Human organoids are being explored for their potential as regenerative grafts, as an alternative to allograft transplants and hemodialysis. Earlier work, analyzing grafts of developing human kidney tissue and whole human embryonic kidney rudiments, serves as a baseline for organoid implantation experiments. When transplanted into immunodeficient mice beneath the kidney capsule, kidney organoid xenografts can form vascularized, glomerulus-like structures, which exhibit a degree of filtration function. However, the absence of an appropriate collecting duct outlet and the presence of abundant stromal-like cells limits the functionality of such grafts and raises safety concerns. Recently, ureteric-like organoids have also been generated, which extend projections that resemble collecting ducts. Combining nephron-like and ureteric-like organoids, along with renal stromal cells, may provide a path towards more functional grafts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.