Abstract

A transgenic SCID (TG-SCID) mouse expressing the human cytokines interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating factor (GM-CSF) has been generated with the aim of making a model system allowing the in vivo proliferation of human hematopoietic cells. Using TG-SCID mice expressing high levels (30-35 ng/ml in the serum) of human GM-CSF and IL-3, we attempted to engraft a human myeloid leukemia cell line, F-36P, derived from a myelodysplastic syndrome (MDS) patient. When F-36P cells were transferred intravenously into sublethally irradiated TG-SCID mice, extensive proliferation of F-36P cells was found 4-6 wk later. Successful engraftment, however, required the preadministration of a monoclonal antibody to mouse interleukin-2 receptor (IL-2R) beta chain, neutralizing NK activity. Surprisingly, all the transplanted TG-SCID mice engrafted with F-36P cells developed hind leg paralysis approximately 6 wk after transfer. Histological analysis demonstrated extensive invasion and formation of osteolytic lesions by the F-36P cells in the vertebrae. These data indicate that transgenic SCID mice expressing human IL-3 and GM-CSF provide a useful system for the study of human leukemia. In addition, NK cells appear to play an important role in rejection of human cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call