Abstract
Equiintegrability in a compact interval $E$ may be defined as a uniform integrability property that involves both the integrand $f_n$ and the corresponding primitive $F_n$. The pointwise convergence of the integrands $f_n$ to some $f$ and the equiintegrability of the functions $f_n$ together imply that $f$ is also integrable with primitive $F$ and that the primitives $F_n$ converge uniformly to $F$. In this paper, another uniform integrability property called uniform double Lusin condition introduced in the papers E. Cabral and P. Y. Lee (2001/2002) is revisited. Under the assumption of pointwise convergence of the integrands $f_n$, the three uniform integrability properties, namely equiintegrability and the two versions of the uniform double Lusin condition, are all equivalent. The first version of the double Lusin condition and its corresponding uniform double Lusin convergence theorem are also extended into the division space.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.