Abstract

Keywords: Combined Direct and Indirect Adaptive Control, Trajectory Tracking Control, Nonholonomic Wheeled Mobile Robots, Multiple Models Approach. Abstract: This paper presents a novel methodology for the trajectory tracking control of nonholonomic wheeled mobile robots using multiple identification models. The overall control system includes two stages. In the first stage, a kinematic controller developed by using kinematic model provides the required linear and angular velocities of the robot for tracking a reference trajectory. In the second stage, the required velocities are taken as the inputs to an adaptive dynamic controller which uses multiple adaptive models for the parameter identification. The proposed adaptive dynamic controller is developed using a combined direct and indirect adaptive control approach where both prediction and tracking errors are used for identification. Simulation results show the effectiveness of the proposed combined direct and indirect control scheme and multiple models approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.