Abstract
This article focuses on heat radiation intensity optimization on the surface of a shell metal mould. Such moulds are used in the automotive industry in the artificial leather production (the artificial leather is used, e.g., on car dashboards). The mould is heated by infrared heaters. After the required temperature is attained, the inner mould surface is sprinkled with special PVC powder. The powder melts and after cooling down it forms the artificial leather. A homogeneous temperature field of the mould is a necessary prerequisite for obtaining a uniform colour shade and material structure of the artificial leather. The article includes a description of a mathematical model that allows to calculate the heat radiation intensity on the outer mould surface for each fixed positioning of the infrared heaters. Next, we use this mathematical model to optimize the locations of the heaters to provide approximately the same heat radiation intensity on the whole outer mould surface during the heating process. The heat radiation intensity optimization is a complex task, because the cost function may have many local minima. Therefore, using gradient methods to solve this problem is not suitable. A differential evolution algorithm is applied during the optimization process. Asymptotic convergence of the algorithm is shown. The article contains a practical example including graphical outputs. The calculations were performed by means of Matlab code written by the authors.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.