Abstract

This experiment was carried out to determine the genotypic variation among rice (Oryza sativa) accessions using simple sequence repeats (SSR) markers. In the present study, a total of 12 SSR markers were used across 87 rice accessions from six countries. NTSYS-pc and PowerMarker software were used for data analysis. Six primers out of these 12 primers showed DNA amplification and polymorphism among the 87 rice accessions. The number of alleles detected by these six primers ranged from 2 to 9 with an average of 6.83 while polymorphism information content (PIC) ranged from 0.34 to 0.79 with an average of 0.55. The unweighted pair group method with arithmetic averages (UPGMA) cluster dendrogram generated based on the six SSR markers grouped the accessions into 4 clusters with 41% similarity coefficient. Accessions from these four clusters have late maturity, green basal leaf sheath colour, no awn and fewer tillers, respectively. This experiment has proven that even a small number of SSR markers are effective in assessing genetic diversity in rice. The genetic diversity revealed by the SSR markers in this study would be very important to select potentially good genotypes for future rice improvement programmes. Key words: Dendrogram, genetic diversity, molecular markers, rice.

Highlights

  • IntroductionRice (Oryza sativa or Oryza glaberrima) is consumed by more than 50% of the world’s population especially in developing countries

  • Success of rice improvement programmes depends on the amount of genetic variability and the degree to which the desirable traits are heritable (Ravi et al, 2003)

  • Characterization using molecular markers is the alternative strategy to overcome the several limitations of morpho-agronomic traits characterization of genetic materials

Read more

Summary

Introduction

Rice (Oryza sativa or Oryza glaberrima) is consumed by more than 50% of the world’s population especially in developing countries. By the year 2025, global demand for rice will be 880 million tonnes which is 70% more of the present world production (IRRI, 2010). The average growth rate of rice yield was 3.68% annually in the 1980s, but it decreased to 0.75% per year in the late 1990s (Nguyen and Ferrero, 2006). In years to come, expanding the areas of rice cultivation will be limited because of land and water resource scarcity due to climate change, urbanization and population growth especially in Asia where more than 50% of the world rice is produced (Devi and Ponnarasi, 2009)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call