Abstract
In this paper we solve the Fuzzy Transportation problems by using a new algorithm namely EAVAM . We introduce an approach for solving a wide range of such problems by using a method which applies it for ranking of the fuzzy numbers. Some of the quantities in a fuzzy transportation problem may be fuzzy or crisp quantities. In many fuzzy decision problems, the quantities are represented in terms of fuzzy numbers. Fuzzy numbers may be normal or abnormal, triangular or trapezoidal or any LR fuzzy number. Thus, some fuzzy numbers are not directly comparable. First, we transform the fuzzy quantities as the cost, coefficients, supply and demands, into crisp quantities by using our method and then by using the EAVAM, we solve and obtain the solution of the problem. The new method is systematic procedure, easy to apply and can be utilized for all types of transportation problem whether maximize or minimize objective function. Finally we explain this method with a numerical example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computer & Organization Trends
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.