Abstract

In this paper, a second order Adams-Bashforth method is proposed to simulate four-sided square lid-driven cavity flow. The convective term and diffusive term in Navier-Stokes equations are solved using a finite central difference scheme and the unsteady term is solved using the Adams-Bashforth method. All of the flow is simulated at below critical Reynolds numbers in a square cavity with an isothermal condition and the same speed for all walls. In this study, the flow structure for a four-sided lid-driven cavity with its four vortices and a graph of the velocity profile along the center of the cavity are presented. In addition, we also study the effect of the Reynolds number on the development of vortices in the cavity. We find that the Reynolds number has a dominant effect on the flow structure in the cavity. The computed results also show good agreement with the published data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.