Abstract

The results of determining the stability of aggregates in water are sometimes contrasting, and do not permit a definition of the energy level or force involved in this analysis. The objective of this study was to compare two methods to determine the geometric mean diameter (GMD) and the percentage of aggregates > 2 mm in Latosol and Cambisol submitted to management under coffee. To conduct this study we collected soil blocks with preserved structure at the following depths, having gypsum as the soil surface reference: Hilled layer (soil above the gypsum layer) and depths of 0.0-0.20 m and 0.20-0.40 m below the gypsum line, with three repetitions, in two soil classes: Latosol and Cambisol. The aggregate stability was determined via wet sieving (standard method) and sonification. For the sonification, 5 g of aggregate were subjected to increasing levels of ultrasonic energy, 2.2, 6.4, 12.8 and 25.5 J mL-1. After sonification at each energy level, samples were passed through the same set of sieves used in the standard method. Geometric mean diameter of the aggregates and the percentage of aggregates > 2 mm was calculated. The data were submitted to variance analysis and the averages were compared by the Scott-Knott test (p < 0.05).  In Cambisol, the GMD and percentage of aggregates > 2.0 mm were higher when these aggregation indices were determined by the standard method, and sonification demonstrated a difference in depth regarding aggregate stability, the 0.20 to 0.40 m depth being more susceptible to breakdown. sonification methods S15 and S30, which respectively correspond to ultrasonic energy levels 6.4 and 12.8 J mL-1, were more sensitive in detecting differences in depth in the GMD aggregation index of the soil used.     Key words: Ultrasonic energy, wet sieving, aggregation. &nbsp

Highlights

  • In research laboratories the measurement of aggregate stability of a soil aims to reproduce some mechanism that causes the breakdown of these aggregates, and evaluates their resistance degree

  • In Cambisol, the geometric mean diameter (GMD) and percentage of aggregates > 2.0 mm were higher when these aggregation indices were determined by the standard method, and sonification demonstrated a difference in depth regarding aggregate stability, the 0.20 to 0.40 m depth being more susceptible to breakdown. sonification methods S15 and S30, which respectively correspond to ultrasonic energy levels 6.4 and 12.8 J mL-1, were more sensitive in detecting differences in depth in the GMD aggregation index of the soil used

  • The wet sieving (WS) of Yoder (1936) is considered the standard recommended procedure to determine the aggregate stability for all soil types, and it has been used as a predictor of water erosion effects on soil structure for many years

Read more

Summary

Introduction

In research laboratories the measurement of aggregate stability of a soil aims to reproduce some mechanism that causes the breakdown of these aggregates, and evaluates their resistance degree. The wet sieving (WS) of Yoder (1936) is considered the standard recommended procedure to determine the aggregate stability for all soil types, and it has been used as a predictor of water erosion effects on soil structure for many years. This method has some limitations, such as the lack of standardization in the water content of the aggregates under analysis, and even regarding the pre-wetting procedures (Castro et al, 1998). The pressure buildup within the matrix is lower and, the clay expansion rate is reduced and lower still is the aggregates breakdown rate (Lado et al, 2004)

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call