Abstract

The Russian-American Long-term Census of the Arctic (RUSALCA) project provides a rare opportunity to study the Russian sector of the Pacific Arctic Region (PAR), which includes the Chukchi and East Siberian Seas. RUSALCA data from 2009 and 2012 allow fuller understanding of changes in ocean chemistry across this the region and, in particular, provide perspectives on the ocean carbon cycle, air-sea CO2 gas exchange, and ocean acidification variability. Summertime surface waters of the western Chukchi Sea and East Siberian Sea mostly exhibited low pCO2 (<100 to 400 µatm) and high pH (8.0 to 8.4) conditions during sea ice retreat. As earlier studies of the adjacent eastern Chukchi Sea show, this area of the PAR had a strong potential for ocean uptake of atmospheric CO2 , with saturation states for calcium carbonate (CaCO3) minerals such as calcite and aragonite (?calcite and ?aragonite, respectively) having values generally greater than two, thereby facilitating CaCO3 production. In contrast, fresher surface waters flowing into the Chukchi Sea from the East Siberian Sea and bottom waters on the PAR shelves exhibited high pCO2 and low pH, ?calcite, and ?aragonite conditions. Low ? surface waters near the Russian coast and nearly 70% of waters next to the seafloor were corrosive to CaCO3 minerals such as aragonite, with this change seemingly occurring at a more rapid rate than typical global open-ocean changes in ocean chemistry. The exposure of subsurface benthic communities and nearshore ecosystems near the Russian coast to potentially corrosive water is likely exacerbated by the ocean uptake of anthropogenic CO2 and gradual ocean acidification. The RUSALCA project also highlights the complexities and uncertainties in the physical and biogeochemical drivers of the ocean carbon cycle and ocean chemistry in this region of the Arctic.

Highlights

  • During the last several decades, Arctic climate conditions have changed rapidly, resulting in complex regional and global environmental impacts

  • This paper focuses on a descriptive assessment of seawater CO2-carbonate chemistry and ocean acidification (OA) variability in the Pacific Arctic Region (PAR), an area that includes the shallow shelves of the Chukchi and East Siberian Seas and the periphery of the deep Canada Basin (Figure 1)

  • This paper focuses on the water-column distribution and variability of ocean acidification indicators such as pCO2, pH, and saturation states for CaCO3 minerals such as calcite (Ωcalcite) and aragonite (Ωaragonite), rather than that of dissolved inorganic carbon (DIC) and total alkalinity (TA)

Read more

Summary

Introduction

During the last several decades, Arctic climate conditions have changed rapidly, resulting in complex regional and global environmental impacts. This paper focuses on a descriptive assessment of seawater CO2-carbonate chemistry and OA variability in the Pacific Arctic Region (PAR), an area that includes the shallow shelves of the Chukchi and East Siberian Seas and the periphery of the deep Canada Basin (Figure 1).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call