Abstract

In areas where land is disturbed to extract energy resources such as coalbed methane, improper soil management may result in soils impaired by elevated salinity. The objectives of this study were to evaluate the emergence and growth of three native grass species (Pseudorogeneria spicata, Hesperostipa comata, and Pascopyrum smithii) as a function of soil salt content and matric potential. The study consisted of nine treatments, combining three soil salinity levels (0.80, 5.0 and 11.0 dS/m) and three matric potential ranges (-0.1 to -1.0, -1.0 to -7.0, and less than -7.0 bars). Seedling emergence, plant height, aboveground biomass, and belowground biomass were significantly decreased by increasing soil salinity and decreasing soil moisture. This resulted in large reductions in growth when soil moisture was decreased within a salinity treatment. Emergence for plants grown in elevated salinity increased as much as 26.7 % when moisture was high. At low soil moisture, elevated salinity resulted in emergence losses as high as 88.3 %. Losses in aboveground biomass ranged from 23.0 to 97.9 % at moderate salinity and 27.3 to 98.5% at high salinity. Results indicate that the impacts of elevated soil salinity are highly influenced by soil moisture. Additional

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call