Abstract
Let G be a finite group. An element g ∈ G is called a vanishing element if there exists an irreducible complex character χ of G such that χ(g)= 0. Denote by Vo(G) the set of orders of vanishing elements of G. Ghasemabadi, Iranmanesh, Mavadatpour (2015), in their paper presented the following conjecture: Let G be a finite group and M a finite nonabelian simple group such that Vo(G) = Vo(M) and |G| = |M|. Then G ≌ M. We answer in affirmative this conjecture for M = Sz(q), where q = 22n+1 and either q − 1, \(q - \sqrt {2q} + 1\) or q + \(\sqrt {2q} + 1\) is a prime number, and M = F4(q), where q = 2 n and either q4 + 1 or q4 − q2 + 1 is a prime number.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.