Abstract

Plants constantly interact with a multitude of microorganisms that they select among other things through their roots. Some bacteria, known as plant growth promoting rhizobacteria (PGPR), are able to stimulate growth and control plant diseases, thanks to the expression of a wide range of beneficial properties to the plant. The aim of this work was to search for biofertilizing, plant-stimulating and biocontrol potentials in PGPR in central and northern Benin. To achieve this goal, the metabolic properties, especially phosphate solubilization, the production of indole acetic acid, hydrogen cyanide, ammonia, exopolysaccharides, certain enzymes and antifungal activity were investigated on nine rhizobacteria strains: Bacillus polymysa, Bacillus anthracis, Bacillus circulans, Bacillus thuringiensis, Bacillus panthothenicus, Pseudomonas cichorii, Pseudomonas putida, Pseudomonas syringae and Serratia marcescens. The results reveal that the three genera of rhizobacteria were producers of hydrogen cyanide, indole acetic acid, catalase and solubilized phosphate. All Pseudomonas and Serratia isolates were producers of exopolysaccharides, protease and lipase while 80% of Bacillus strains were lipase producers and 60% produced exopolysaccharides and protease. As regards the production of ammonia by rhizobacteria, 100% by S. marcescens, 78% of Pseudomonas strains and 80% of Bacillus strains produce them. These results show the possibility of using these rhizobacteria as biological fertilizers to stimulate growth, control fungal diseases and improve crop productivity in Benin. Key words: Rhizobacteria, Bacillus, Pseudomonas, Serratia, enzyme production, P-solubilizing bacteria, indole acetic acid (IAA).

Highlights

  • After a long dependence on plant protection products and synthetic fertilizers, today's global agriculture is hit by a current trend that favors more sustainable and more environmentally friendly practices

  • The metabolic properties, especially phosphate solubilization, the production of indole acetic acid, hydrogen cyanide, ammonia, exopolysaccharides, certain enzymes and antifungal activity were investigated on nine rhizobacteria strains: Bacillus polymysa, Bacillus anthracis, Bacillus circulans, Bacillus thuringiensis, Bacillus panthothenicus, Pseudomonas cichorii, Pseudomonas putida, Pseudomonas syringae and Serratia marcescens

  • The results reveal that the three genera of rhizobacteria were producers of hydrogen cyanide, indole acetic acid, catalase and solubilized phosphate

Read more

Summary

Introduction

After a long dependence on plant protection products and synthetic fertilizers, today's global agriculture is hit by a current trend that favors more sustainable and more environmentally friendly practices. To meet these New demands, farmers need to turn to the exploitation and profitability of natural resources through agricultural practices that combine performance and crop protection at a lower environmental cost. In this context, inoculation of plants with rhizobacteria is a very popular technology in organic farming. The solubilization index (SI) was calculated using the following formula used by Shakeela et al

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call