Abstract

A new exotic weed, Flaveria bidentis, is spreading in central China where it forms dense monospecific patches modifying the structure of different native ecosystems and threatening native aboveground biodiversity. However, little is known about the consequences of such an invasion for soil bacterial community, especially its effect pattern at different invasion stages. In this study, soil samples were taken in native ecosystems that were uninvaded, partially invaded (transition), and severely invaded by F. bidentis. The bacterial richness and diversity in F. bidentis in rhizospheres soil was evaluated using denaturing gradient gel electrophoresis (DGGE) analysis. Different stages of F. bidentis invasion can trigger changes in soil physicochemical properties in particularly in available N and P F. bidentis invasion significantly decreased the richness of soil bacterial community, and the decline contents were positively correlated with invasion progress. In the invaded soils, bacterial species in Proteobacteria , Chloroflexi and Actinomycetes decreased with invasion, with the greatest reduction in relative abundance occurring for Proteobacteria, which was the dominant species in the native soils. Invasion of F. bidentis corresponded with an alteration in the structure of soil bacterial community, and soil microbial biomass as well, thus soil environment modification was expected to promote spreading of this exotic weeds in turn. Key words : Biological invasion, Flaveria bidentis, soil nutrients, soil bacteria, polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.