Abstract
A classifier based on Support Vector Data Description (SVDD) is proposed for spoken digit recognition. We use the Mel Frequency Discrete Wavelet Coefficients (MFDWC) and the Mel Frequency cepstral Coefficients (MFCC) as the feature vectors. The proposed classifier is compared to the HMM and results are promising and we show the HMM and SVDD classifiers have equal accuracy rates. The performance of the proposed features and SVDD classifier with several kernel functions are evaluated and compared in clean and noisy speech. Because of multi resolution and localization of the Wavelet Transform (WT) and using SVDD, experiments on the spoken digit recognition systems based on MFDWC features and SVDD with weighted polynomial kernel function give better results than the other methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.