Abstract

Trust region methods are a class of effective iterative schemes in numerical optimization. In this paper, a new improved nonmonotone adaptive trust region method for solving unconstrained optimization problems is proposed. We construct an approximate model where the approximation to Hessian matrix is updated by the scaled memoryless BFGS update formula, and incorporate a nonmonotone technique with the new proposed adaptive trust region radius. The new ratio to adjusting the next trust region radius is different from the ratio in the traditional trust region methods. Under some suitable and standard assumptions, it is shown that the proposed algorithm possesses global convergence and superlinear convergence. Numerical results demonstrate that the proposed method is very promising.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.