Abstract

2 ABSTRACT: This paper reports the effect of various dopants on the electronic properties of Zig-Zag (4, 0) semi- conducting single walled two probe Carbon Nanotube system using first principle calculations and Non-Equilibrium Green's Function (NEGF) method. The modeled Zig-Zag (4,0) single walled Carbon Nanotube was doped with atoms of elements Tellurium (Te), Antimony (Sb), Arsenic (As) & Chromium (Cr) using Atomistic Tool Kit (version 13.8.1) software and its graphical interface (custom analyzer) Virtual Nanolab. The simulations were carried out in device mode using Density Function Theory (DFT) calculations. The current-voltage (I-V) characteristics & conductance of the four proposed models were studied for comparative study under low-bias conditions. The results show that Arsenic doping has increased the conductance of the model manifold than other doping atoms whereas Chromium doping has showed an amazing property of Negative Differential Resistance (NDR). Hence, we conclude that the proposed model is suitable for use in various CNT based high speed nanoelectronics applications including amplification, oscillation and arithmetic architectures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.