Abstract

The marching cubes algorithm has been widely adopted for extracting a surface mesh from a volumetric description of the visual hull reconstructed from silhouettes. However, typical volumetric descriptions, such as an octree, provide only a binary description about the visual hull. The lack of interpolation information along each voxel edge, which is required by the marching cubes algorithm, usually results in inaccurate and bumpy surface mesh. In this paper, we propose a novel method to efficiently estimate the exact intersections between voxel edges and the visual hull boundary, which replace the missing interpolation information. The method improves both the visual quality and accuracy of the estimated visual hull mesh, while retaining the simplicity and robustness of the volumetric approach. To verify this claim, we present both synthetic and real-world experiments, as well as comparisons with existing volumetric approaches and other approaches targeting at an exact visual hull reconstruction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.