Abstract

In this paper, we propose a new refinement filter for depth maps. The filter convolutes a depth map by a jointly computed kernel on a natural image with a weight map. We call the filter weighted joint bilateral filter. The filter fits an outline of an object in the depth map to the outline of the object in the natural image, and it reduces noises. An additional filter of slope depth compensation filter removes blur across object boundary. The filter set’s computational cost is low and is independent of depth ranges. Thus we can refine depth maps to generate accurate depth map with lower cost. In addition, we can apply the filters for various types of depth map, such as computed by simple block matching, Markov random field based optimization, and Depth sensors. Experimental results show that the proposed filter has the best performance of improvement of depth map accuracy, and the proposed filter can perform real-time refinement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.