Abstract

Nitrogen (N) is usually the nutrient most limiting production in semiarid ecosystems and at very low concentrations can seriously impact ecosystem processes. Soil from five mines, incorporating a number of commonly used land reclamation practices (grazing vs. un-grazed; stockpiled vs. direct hauled soil; shrub mosaic vs. grass seed mix; and stubble mulch vs. hay mulch), were sampled and analyzed for soil total N (TN) and microbial biomass N (MBN). All mines were located in semiarid Wyoming in either mixed-grass or sagebrush steppe ecosystems. The various management practices investigated appeared to have little influence on TN. Reclaimed soils averaged 30% less TN than undisturbed native soils, suggesting that N could potentially limit vegetation production. Only two reclaimed sites (grass and shrub) at Mine 1 contained a greater mass of TN than an undisturbed site, and while the reason is unclear, greater precipitation (20% higher relative to the other sites sampled) may be responsible. The microbial communities present in undisturbed soils appear to uptake N more efficiently than microbial communities present in reclaimed soil, relative to total soil N. As N fertilizer is only rarely used in Wyoming surface mines, N can only accumulate in a reclaimed soil via wet or dry deposition or by N-fixation by free-living micro-organisms or through symbiotic relationships. However, as legumes are typically only a small component of the vegetation, presumably deposition and/or microbial fixation of N are responsible for the majority of N accumulation in these ecosystems. Despite the low TN in reclaimed soils, high plant production on these reclaimed soils suggests that TN is not limiting production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call