Abstract

  EM (effective microorganisms) is a commercial biofertilizer mainly consists of photosynthetic and lactic acid bacteria, yeast and actinomycetes. The present study was undertaken to investigate the effect of EM application and two strains of nitrogen fixing Bradyrhizobium japonicum (TAL- 102 and MN-S) on plant growth, nodulation and yield of black gram [Vigna mungo (L.) Hepper] in different soil amendment systems including unamended soil, farmyard manure (FYM) @ 5 g 100 g-1, Trifolium alexandrinum green manure (GM) @ 4 g 100 g-1 and recommended dose of NPK fertilizers. Nodule number was significantly enhanced by inoculation of either of the two B. japonicum strains in NPK and un-amended soils. A marked increase in nodule biomass was also recorded due to B. japonicum inoculation in these 2 types of soils. Grain yield was significantly increased by 46% due to either of the two B. japonicum strains in NPK amended soil. EM application markedly enhanced nodule number in FYM amended soil. Conversely, EM application in combination with either of the two B. japonicum strains resulted in pronounced reduction both in number and biomass of nodules in NPK fertilizers amendment. EM application significantly enhanced grain yield by 48% in NPK amendment without B. japonicum inoculation.   Key words: Black grams, Bradyrhizobium japonicum, effective microorganisms, nitrogen fixation, soil amendments.

Highlights

  • Chemical fertilizers are an indispensable component of today’s agriculture

  • The present study was undertaken to investigate the effect of EM application and two strains of nitrogen fixing Bradyrhizobium japonicum (TAL- 102 and MN-S) on plant growth, nodulation and yield of black gram [Vigna mungo (L.) Hepper] in different soil amendment systems including unamended soil, farmyard manure (FYM) @ 5 g 100 g-1, Trifolium alexandrinum green manure (GM) @ 4 g 100 g-1 and recommended dose of NPK fertilizers

  • Effective microorganisms culture consists of co-existing beneficial microorganisms, the main being the species of photosynthetic bacteria; Rhodopseudomonas plastris and Rhodobacter sphacrodes; lactobacilli such as Lactobacillus plantarum, L. casei and Streptococcus lactis; yeasts (Saccharomyces spp) and Actinomycetes (Strptomyces spp.) which improve crop growth and yield by increasing photosynthesis, producing bioactive substances such as hormones and enzymes, controlling soil diseases and accelerating decomposition of lignin materials in the soil (Higa, 2000; Hussain et al, 2002)

Read more

Summary

Introduction

Chemical fertilizers are an indispensable component of today’s agriculture. About 60% of humanity eventually owes its nutritional survival to N fertilizers (Fixon and West, 2002). Since the effect of organic nutrients on crop yield is long term and not immediate, farmers are reluctant to use organic fertilizers in their cropping system. Use of EM (effective microorganisms) along with organic materials possibly be an effective technique for stimulating release of nutrients from organic sources. Effective microorganisms culture consists of co-existing beneficial microorganisms, the main being the species of photosynthetic bacteria; Rhodopseudomonas plastris and Rhodobacter sphacrodes; lactobacilli such as Lactobacillus plantarum, L. casei and Streptococcus lactis; yeasts (Saccharomyces spp) and Actinomycetes (Strptomyces spp.) which improve crop growth and yield by increasing photosynthesis, producing bioactive substances such as hormones and enzymes, controlling soil diseases and accelerating decomposition of lignin materials in the soil (Higa, 2000; Hussain et al, 2002).

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call