Abstract

The paper presents some results of computational modelling of a gas-fired pulse combustor with aerodynamic valves. The development of the model followed experimental investigations during which the combustor geometry and operating conditions were defined. A simple 'tank and tube' approach was adopted by decomposing the combustor into several elements which were modelled separately, together with the interconnecting processes. The solution was obtained by marching integration in time over several cycles. The model reproduced reasonably well the recorded time history and averaged values of all basic parameters and is expected to complement the experiments aiming to develop a pulse combustor as a device for to cleaning the outer sides of power plants’ boiler heating surfaces during operation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call