Abstract

Field trials and laboratory experiments were conducted on six advanced breeding lines of tomato (Lycopersicon esculentum L.) between 2004 and 2006 to genetically assess the organoleptic properties of the tomato lines, determine the relationships among tomato traits using correlation analysis and to estimate the fruit yield potential of the tomato lines. The trial was laid out in randomized complete block design with three replicates. Planting was done on four-row plots of 8 x 5 m using intra row spacing of 60 x 50 cm to obtain a plant population of 33,333 per ha. The results show that agronomic traits such as plant height, fruit weight and fruit yield differed significantly from one line to another, while significant differences exist in their organoleptic properties such as percentage titratable acid, organic acids, sugars and dry matter contents. Fruit yield ranged from 11.0 Mg/ha (CLN 1462B) to 30.0 Mg/ha (Manuella). The highest correlation coefficient (r=0.99) was found in the relationship between fruit weight and fruit yield. Titratable acids was highly and positively correlated with dry matter content, citric acid and malic acid, while malic acid among others was negatively and significantly correlated with fructose, glucose and pH.   Key words: Advanced tomato lines, Organoleptic properties, qualitative traits, correlation coefficients biochemical properties.

Highlights

  • Tomato (Lycopersicon esculentum L) is one of the most important fruit vegetables globally

  • In order to strike a balance between fruit yield and quality traits, this study aimed at assessing the organoleptic properties of some advanced tomato breeding lines identified to be useful as parent materials to improve the fruit size of bacterial wilt tolerant materials

  • Mean square (MS) for all agronomic characters such as plant height, fruit weight, fruit yield as well as biochemical properties including percentage of titratable acid, dry matter content, citric acid, malic acid, fructose, glucose and pH values were highly significant at p

Read more

Summary

Introduction

Tomato (Lycopersicon esculentum L) is one of the most important fruit vegetables globally. In Nigeria, the most acceptable variety is Roma VF and generally adaptable to Nigerian Savanna ecology (Ibrahim and Dadari, 2002). Genetic improvement of tomato is a major thrust of many research Institutes in different parts of the globe. This research effort focused mainly on development of cultivars for higher yield potential, adaptation, and market value acceptability and enhanced organoleptic properties. Agong et al (2000), used multiple correlation analysis to study relationship between some biochemical parameters and fruit weight in tomato; their results showed that most of the biochemical characters were negatively correlated with fresh tomato yields, suggesting that breeding programme may have to sacrifice larger fruit size to obtain or retain better quality.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.