Abstract

Let R be a ring. A subclass T of left R-modules is called a weak torsion class if it is closed under homomorphic images and extensions. Let T be a weak torsion class of left R-modules and n a positive integer. Then a left R-module M is called T-finitely generated if there exists a finitely generated submodule N such that M/N ∈ T; a left R-module A is called (T,n)-presented if there exists an exact sequence of left R-modules $$0 \to {K_{n - 1}} \to {F_{n - 1}} \to \cdots \to {F_1} \to {F_0} \to M \to 0$$ such that F0,..., Fn−1 are finitely generated free and Kn−1 is T-finitely generated; a left R-module M is called (T,n)-injective, if Ext n R (A,M) = 0 for each (T, n+1)-presented left R-module A; a right R-module M is called (T,n)-flat, if Tor R n (M,A) = 0 for each (T, n+1)-presented left R-module A. A ring R is called (T,n)-coherent, if every (T, n+1)-presented module is (n + 1)-presented. Some characterizations and properties of these modules and rings are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.