Abstract

BACKGROUND Human umbilical cord contains two arteries and one vein with their tunica intima and tunica media layers. The role of tunica adventitia is fulfilled by Wharton’s jelly, a mucoid connective tissue. The function of Wharton’s jelly is to prevent the vessels from compression and torsion which is essential for foetal development. The purpose of the study was to estimate the importance of Wharton’s jelly in the growth of the foetus. METHODS Umbilical cord tissue collected from each case was immediately put in 10 % formalin for fixation. Slides were then stained with Haematoxylin and Eosin. These slides were then read under light microscopy and measurements were taken using a photomicrograph. Wharton’s jelly area was calculated by subtracting the total vessel area from the umbilical cord area. RESULTS The histological measurements of umbilical vessels include the external diameter, lumen diameter, wall thickness, thickness of tunica intima and tunica media, and the area. The mean area of the umbilical cord was 35.73 ±23.04 mm2 (Mean ± SD) and the mean area of the Wharton’s jelly was 29.74 ± 19.26 mm2. There was a significant difference in the external diameter and wall thickness of the umbilical artery. Analyses showed that there was a significantly (P < 0.01) increased external diameter and wall thickness of umbilical artery in normal cases, compared to single umbilical artery cases. CONCLUSIONS There was a significant positive correlation between the gestational age and the external diameter of the umbilical cord. There was a significant difference in the external diameter of the umbilical cord between SUA cases (4.45 mm) and the other foetuses with normal umbilical cord (6.53 mm). There was a significantly increased external diameter, lumen diameter, wall thickness and area of umbilical vein in normal cases, compared to single umbilical artery cases. There was a significantly increased area of umbilical cord and area of Wharton’s jelly in normal umbilical cord foetuses than foetuses with a single umbilical artery. KEY WORDS Foetus, Umbilical Cord, Wharton’s Jelly, Umbilical Artery, Umbilical Vein, Light Microscopy

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.