Abstract
Blood cell segmentation and identification is very important as blood being health indicator. A person’s health is determined using complete blood count. The contents of the blood in particular the white blood cells, the red blood cells and platelets define the state of health. For detection and treatment of diseases like anemia, leukemia etc. RBC count is required. In laboratory, blood cell counting is done by using hemocytometer and microscope. This method gives inaccurate and unreliable results that depend on physician skill. This task is laborious and time consuming. The aim of this research is to produce a survey on computer vision system that can detect and estimate the number of red blood cells in the blood sample image using image processing algorithms. This paper considers image processing for counting of blood cells. Image processing algorithms involve six major steps: image acquisition, preprocessing, image enhancement, image segmentation, feature extraction and counting algorithm. The objective is to study the different methodologies of RBC counting and identification of research directions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.