Abstract

This research is an attempt to develop a new procedure for the synthesis of reactor networks (RNs) using a genetic algorithm (GA) coupled with the quasi-linear programming (LP) method. The GA is used to produce structural configuration, whereas continuous variables are handled using a quasi-LP formulation for finding the best objective function. Quasi-LP consists of LP together with a search loop to find the best reactor conversions (x i ), as well as split and recycle ratios (y i ). Quasi-LP replaces the nonlinear programming (NLP) problem, and is easier to solve. To prevent complexity and ensure an optimum solution, two types of ideal reactors, namely plug flow reactor (PFR) and continuous stirred tank reactor (CSTR), were considered in the network. Since PFRs require the introduction of differential equations into the problem formulation, a CSTR cascade was used instead in order to eliminate differential equations. To demonstrate the effectiveness of the proposed method, three reactor-network synthesis case studies are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call