Abstract

Advanced building design is a rather new interdisciplinary research branch, combining knowledge from physics, engineering, art and social science; its support from both theoretical and computational mathematics is needed. This paper shows an example of such collaboration, introducing a model problem of optimal heating in a low-energy house. Since all particular function values, needed for optimization are obtained as numerical solutions of an initial and boundary value problem for a sparse system of parabolic partial differential equations of evolution with at least two types of physically motivated nonlinearities, the usual gradient-based methods must be replaced by the downhill simplex Nelder-Mead approach or its quasi-gradient modifications. One example of the real low-energy house in Moravian Karst is demonstrated with references to other practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call