Abstract

This study sought to assess the contribution of coffee agroforestry systems (CAFS) in conserving tree diversity and carbon stocks in the western region of Cameroon. Inventory was carried out in 52 plots laid out in CAFS and in adjacent secondary forest. Above-ground biomass was estimated using allometric method. A total of 30 species belonging to 19 families were identified in CAFS and 30 species belonging to 15 families in the forest. The Jaccard similarity index between CAFS and forest was 43%. In the CAFS, the average value of Shanon diversity index was 1.61, reflecting a low diversity. The average tree density was 133 stems/ha in CAFS and 345 stems/ha in the forest. The CAFS stored an amount of carbon of 24.28 tC/ha, representing only 10.30% of the average amount of carbon stored by the forest (235.88 tC/ha). In the CAFS, Elaeis guineensis was the most dominant species with an important value index of 169.96%. The most efficient species for carbon sequestration were Triplochiton scleroxylon with 2.38 tC/tree. These results indicate the need to integrate CAFS as a biodiversity conservation and carbon sequestration land-use system due to the many socio-economic and ecological benefits they provide both in climate change adaptation and mitigation. Key words: Coffee agroforestry system, diversity, ecosystem services, climate change mitigation, carbon stock.  

Highlights

  • Global forest cover has drastically decreased from 4128 million ha in 1990 to 3999 million ha in 2015 (FAO, 2016)

  • Out of the 48 plots surveyed in coffee agroforestry systems (CAFS) in five villages, 1066 individuals belonging to 30 species and 19 families were recorded

  • Statistical analysis revealed that there is a significant difference between the Shannon diversity index of the forest and that of CAFS in all the villages and between the villages, there is a significant difference between the Shannon diversity index of Fonjomonko and the other villages (P < 0.001).The Simpson diversity index of Fonjomonko (0.19) was low, showing that there is a higher probability that two trees selected randomly may belong to the same species

Read more

Summary

Introduction

Global forest cover has drastically decreased from 4128 million ha in 1990 to 3999 million ha in 2015 (FAO, 2016). Extensive conversion of forests and agricultural intensification are typically identified among the most prominent drivers of land-use change and biodiversity loss (Geist and Lambin, 2002). This land-use change is one of the major causes of global climate change (IPCC, 2014). As the impact of climate change is being felt more and more over the years, especially with the perception of small farmers who report lower and / or increased rainfall and shifts in rainy and dry seasons (Ogouwalé, 2006), there is increasing interest to combine.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call