Abstract
Scatter halfspace depth is a statistical tool that allows one to quantify the fitness of a candidate covariance matrix with respect to the scatter structure of a probability distribution. The depth enables simultaneous robust estimation of location and scatter, and nonparametric inference on these. A handful of remarks on the definition and the properties of the scatter halfspace depth are provided. It is argued that the currently used notion of this depth is well suited especially for symmetric random vectors. The scatter halfspace depth closely relates to an appropriate distance of matrix-generated ellipsoids from an upper level set of the (location) halfspace depth function. Several modifications and extensions to the scatter halfspace depth are considered, with their theoretical properties outlined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.