Abstract
Methanol, a rich one-carbon feedstock, can be massively produced from CO2 by the liquid sunshine route, which is helpful to realize carbon neutrality. β-Farnesene is widely used in the production of polymers, surfactants, lubricants, and also serves as a suitable substitute for jet fuel. Constructing an efficient cell factory is a feasible approach for β-farnesene production through methanol biotransformation. Here, we extensively engineered the methylotrophic yeast Ogataea polymorpha for the efficient bio-production of β-farnesene using methanol as the sole carbon source. Our study demonstrated that sufficient supply of precursor acetyl-CoA and cofactor NADPH in an excellent yeast chassis had a 1.3-fold higher β-farnesene production than that of wild-type background strain. Further optimization of the mevalonate pathway and enhancement of acetyl-CoA supply led to a 7-fold increase in β-farnesene accumulation, achieving the highest reported sesquiterpenoids production (14.7 g/L with a yield of 46 mg/g methanol) from one-carbon feedstock under fed-batch fermentation in bioreactor. This study demonstrates the great potential of engineering O. polymorpha for high-level terpenoid production from methanol.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.