Abstract

The development of platforms for the expansion and directed differentiation of human pluripotent stem cells (hPSCs) in large quantities under xeno-free conditions is a key step toward the realization of envisioned stem cell-based therapies. Microcarrier bioreactors afford great surface-to-volume ratio, scalability and customization with typical densities of 106-107 cells/ml or higher. In this study, a simple and inexpensive method was established for generating microcarriers without animal-derived components. While coating polystyrene beads with vitronectin alone did not support the culture of hPSCs in stirred suspension, the inclusion of recombinant human serum albumin and UV irradiation led to enhanced seeding efficiency and retention while cells grew more than 20-fold per passage for multiple successive passages and without loss of cell pluripotency. Human PSCs expanded on microcarriers were coaxed to tri-lineage differentiation demonstrating that this system can be used for the self-renewal and specification of hPSCs to therapeutically relevant cell types. Such systems will be critical for the envisioned use of stem cells in regenerative medicine and drug discovery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call