Abstract
Hexagonal boron nitride (h-BN) nanodots of 10 nm have been synthesized via top-down route from bulk powders. A combination of ultrasonic and thermal treatments in phosphoric acid has been used to achieve edge etching and size reduction to the nanoscale. A new emission in the ultraviolet region, correlated to a characteristic infrared-active vibration, has been detected in the BN dots. The UV emission is stable in as-prepared samples but quenches after thermal treatments higher than 100 °C. Besides the UV band, the fluorescent emission of h-BN shows a broad band in the visible region, whose intensity reaches a maximum after thermal treatment at 200 °C. Structural and optical characterization techniques have been used to investigate the synthesis-properties relationship in h-BN and the hydroxyl covalent functionalization of the surfaces. The experiments show that the particular combination of ultrasonic treatment and etching in temperature is essential to achieve the UV fluorescent emission. Quantum chemistry calculations have been used to evaluate Stones-Wales defects as possible causes of the optical and vibrational properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.