Abstract

Here, a strategy is reported to prepare Ni-Fe layered double hydroxide (NiFe-LDH) with abundant exposed edge planes for enhanced oxygen evolution reaction (OER). The edge-to-edge assembly of ultrafine NiFe-LDH directed by graphite-like carbon is performed through a one-step hydrothermal process to form self-supporting nanosheet arrays (named NiFe-LDH/C), in which ascorbic acid is employed as the carbon precursor to control both the platelet size and the assembly mode of NiFe-LDH. Benefiting from the unique structural engineering, NiFe-LDH/C can not only achieve a fast surface reconstruction into the highly active γ-phase structure, but also exposes abundant active edge sites, thus leading to a superior OER performance with the overpotential as low as 234mV at a current density of 50mA cm-2 . Furthermore, density functional theory (DFT) calculations reveal that the unsaturated Fe-sites and the bridge-sites connecting Ni and Fe atoms, which only exist on the edge planes of NiFe-LDH, are the main active centers responsible for promoting the intrinsic OER activity. This work provides a specific and valuable reference for the rational design of high-quality electrocatalysts through structural engineering for renewable energy applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.