Abstract

An extended Su–Schrieffer–Heeger (SSH) model containing four periods of the hopping coefficients, called SSH4 model, is constructed to explore robust quantum state transfer. The gap state protected by the energy gap plays the role of the topological channel where the particle initially located at the last lattice site has the probability to arise at the first and all even lattice sites equally. Serving those sites as ports, a multi-port router can be realized naturally, and the fidelity reaches unity in a wide range of parameters under the long chain and random disorder. Further, when we reduce the third intracell hopping to a small value, the occupancy probability of the second lattice site in every unit cell will reduce to zero, by which a new topological router can be induced. In addition, our SSH4 model can work as a 1/3 beam splitter. Namely, the particle initially occupies the first lattice site and finally appears with equal probability at three lattice sites. We can also realize a 1/2 beam splitter. Our four-period SSH model provides a novel way for topological quantum information processing and can engineer two kinds of quantum optical devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.