Abstract

It is of great importance to design rationally combined metal-organic frameworks (MOFs) with multifunctional nano geometries to develop advanced energy storage devices. We devised a simple room-temperature boronization system to produce ultrathin Ni-ZIF/Ni-B nanosheets with plenty of crystalline-amorphous phase barriers. The Ni-ZIF/Ni-B-24 h nanoflakes electrodes exhibited a specific capacitance of 104.2F g−1 with the cyclic stability of 94.5 % using the flaky architecture and inherent properties of the Ni-ZIF/Ni-B-24 h nanoflakes. Furthermore, an asymmetric supercapacitor made of Ni-ZIF/Ni-B-24 h and activated carbon had a high specific capacitance of 370.7F g−1 at 1 A/g, and the energy density of 131.8 W h kg−1 at a power density of 800 W kg−1. Intriguingly, Ni-ZIF/Ni-B-24 h nanoflakes have consistently delivered higher specific capacities because of the adequate electrochemical active sites and an increase in electron transfer rate during redox reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call