Abstract
In the field of regenerative medicine, umbilical cord-derived mesenchymal stem cells (UC-MSCs) have a plausible potential. However, traditional two-dimensional (2D) culture systems remain limited in replicating the complex in vivo microenvironment. Thus, three-dimensional (3D) cultures offer a more physiologically relevant model. This study explored the impact of 3D culture conditions on the UC-MSC secretome and its ability to promote angiogenesis, both in vitro and in vivo. In this study, using two distinct methods, we successfully cultured UC-MSCs: in a monolayer (2D-UC-MSCs) and as spheroids formed in U-shaped 96-well plates (3D-UC-MSCs). The presence and expression of proangiogenic miRNAs in the conditioned media (CM) of these cultures were investigated, and differential expression patterns were explored. Particularly, the CM of 3D-UC-MSCs revealed significantly higher levels of miR-21-5p, miR-126-5p, and miR-130a-3p compared to 2D-UC-MSCs. Moreover, the CM from 3D-UC-MSCs revealed a higher effect on endothelial cell proliferation, migration, and tube formation than did the CM from 2D-UC-MSCs, indicating their proangiogenic potential. In an in vivo Matrigel plug mouse model, 3D-UC-MSCs (cells) stimulated greater vascular formation compared to 2D-UC-MSCs (cells). 3D culture of UC-MSCs' secretome improves the promotion of angiogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.