Abstract

N-Doped carbon sheets based on edge engineering provide more opportunities for improving oxygen reduction reaction (ORR) active sites. However, with regard to the correlation between porous structural configurations and performances, it remains underexplored. Herein, a silica-assisted localized etching method was employed to create two-dimensional mesoporous carbon materials with customizable pore structures, abundant edge sites, and nitrogen functionalities. The mesoporous carbon exhibited superior electrocatalytic performance for the ORR compared to that of a 20 wt % Pt/C catalyst, achieving a half-wave potential of 0.88 V versus RHE, situating them in the leading level of the reported carbon electrocatalysts. Experimental data suggest that the edge graphitic nitrogen sites played a crucial role in the ORR process. The three-dimensional interconnected pores provided a high density of active sites for the ORR and facilitated the efficient transport of electrons. These unique properties make the carbon sheets a promising candidate for highly efficient air cathodes in rechargeable Zn-air batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.