Abstract
There is an urgent demand for producing biodegradable polymer based composites with good thermal and/or electrical conductivity to mitigate the plastic pollution introduced by electronic waste. Here, we have designed and engineered a mechanically strong, melt processable, biodegradable polymer based nanocomposite with excellent thermal and electrical conductivity using filler dispersion principle and the work of adhesion (Wa) as guides. In the design, graphene nano-platelets (GNPs) were dispersed into a highly ductile biodegradable polymer - poly (butylene adipate-co-butylene terephthalate) (PBAT). Blending with another biodegradable polymer, poly (lactic acid) (PLA) that has low affinity to GNPs, confined the dispersion of GNPs within PBAT matrix, thereby facilitating the formation of a percolated network. As a result, high thermal conductivity (3.15W/m⋅K) and electrical conductivity (338S/m) were achieved for the nanocomposite at 40 wt% of GNPs loading, and the mechanical performance remained strong even at such filler loading due to the strong interaction between GNPs and PBAT. This study provides a new strategy for effectively producing high thermally and/or electrically conductive polymer nanocomposites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.