Abstract
Purple non-sulfur photosynthetic bacteria such as Rhodobacter sphaeroides and Rhodopseudomonas palustris produce hydrogen gas (H2) via proton reduction, which is catalyzed by nitrogenase. Although the expression of nitrogenase is usually repressed under nitrogen-sufficient conditions, a partial deletion of nifA, which encodes a transcriptional activator of nitrogen-fixation genes, has been reported to enable the constitutive expression of nitrogenase in R. palustris. In this study, we evaluated the effects of a similar mutation (nifA* mutation) on H2 production during the photoheterotrophic growth of R. sphaeroides, based on the notion that H2 production by nitrogenase compensates for the loss of CO2 fixation via the Calvin cycle, thereby restoring the redox balance. The chromosomal nifA* mutation resulted in the slight restoration of the photoheterotrophic growth of a mutant strain lacking ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), the key enzyme of the Calvin cycle, when the strain was cultured in van Niel's yeast medium. In addition, the strain with the nifA* mutation produced detectable levels of H2 during photoheterotrophic growth with acetate and ammonium; however, the H2 production was considerably lower than that observed during the photoheterotrophic growth of the strain with acetate and L-glutamate, where L-glutamate serves as a poor nitrogen source, thereby causing nitrogenase derepression. On the other hand, introduction of a multicopy plasmid harboring nifA* markedly restored the photoheterotrophic growth of the RubisCO-deletion mutant in van Niel's yeast medium and resulted in efficient H2 production during the photoheterotrophic growth with acetate and ammonium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.