Abstract

Rational design of multi-structural defects in the transition-metal oxides is a very alluring and challenging strategy to significantly improve its oxygen evolution reaction (OER) performance. Herein, a simple and promising element doping approach is demonstrated to fabricate a poor-crystalline V-doping CuCo2O4 (V-CuCo2O4) nanoneedle with rich oxygen vacancies (Vo), partially amorphous phase, and Co2+ defects on the carbon fiber (CF) (V-CuCo2O4/CF). The results indicate that the V doping could further weaken the crystallinity of V-CuCo2O4, providing the thoroughfares for the convenience of electrolyte penetration and the exposure of active sites. Meanwhile, [CoO6] octahedron in the V-CuCo2O4 lattice is gravely distorted due to a strong electronic interaction between the doped V and Co atoms, creating more Co2+ active species. With the merits of these multiple structural defects, V-CuCo2O4/CF exhibits rich active sites, and its intrinsically electrocatalytic activity is significantly enhanced. The optimized V-CuCo2O4/CF electrocatalyst has a significantly enhanced OER activity with a required low overpotential of ∼204 and ∼246 mV at a current density of 100 and 300 mA cm-2, respectively, a small Tafel slope of 40.7 mV dec-1, and excellent stability in an alkaline medium. Furthermore, the results from the projected partial density of states calculation not only demonstrate that the 3-fol-coordinated Co near Vo bonded with Cu and V sites (Cu-Co(surf-Vo)-V) exhibits an enhanced electronic transfer activity but also reveal that the doped V could protect the Co sites from the deactivation by intermediates overbinding on the V sites. This work provides new insights into structure engineering of spinel phase copper cobaltite, resulting in significantly boosting electrocatalytic OER activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.