Abstract

Hydrogen-terminated (H-terminated) diamond, when surface transfer doped, can support a sub-surface two-dimensional (2D) hole band that possesses a strong Rashba-type spin–orbit interaction. By incorporating a V2O5/Al2O3 bilayer gate dielectric in a diamond-based metal–oxide–semiconductor architecture, metallic surface conductivity can be maintained at low temperature, avoiding the carrier freeze out exhibited by devices with an Al2O3 gate dielectric alone. Hole densities of up to 2.5 × 1013 cm−2 are achieved by the electrostatic gating of the device, and the spin–orbit interaction strength can be tuned from 3.5 ± 0.5 meV to 8.4 ± 0.5 meV, with a concurrent reduction in the spin coherence length from 40 ± 1 nm to 27 ± 1 nm. The demonstration of a gated device architecture on the H-terminated that avoids the need to cycle the temperature, as is required for ionic liquid gating protocols, opens a pathway to engineering practical devices for the study and application of spin transport in diamond.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.