Abstract

Aureobasidium pullulans produced poly-L-malic acid (PMA) as the main metabolite in fermentation but with relatively low productivity and yield limiting its industrial application. In this study, A. pullulans ZX-10 was engineered to overexpress cytosolic malate dehydrogenase (MDH) and pyruvate carboxylase (PYC) and PMA synthetase (PMS) using a high-copy yeast episomal plasmid with the gpdA promoter from Aspergillus nidulans. Overexpressing endogenous PMS and heterologous MDH and PYC from Aspergillus oryzae respectively increased PMA production by 19 % – 37 % (0.64 – 0.74 g/g vs. 0.54 g/g for wild type) in shake-flask fermentations, demonstrating the importance of the reductive tricarboxylic acid (rTCA) pathway in PMA biosynthesis. A. pullulans co-expressing MDH and PYC produced 96.7 g/L PMA at 0.90 g/L∙h and 0.68 g/g glucose in fed-batch fermentation, which were among the highest yield and productivity reported. The engineered A. pullulans with enhanced rTCA pathway is advantageous and promising for PMA production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call