Abstract

How far can you stretch an atomic wavefunction? An experiment demonstrates that the wavefunction of an ensemble of ultracold atoms trapped in an optical lattice can be reversibly expanded and shrunk over a distance of 1.5 mm. The manipulation of matter waves had an important role in the history of quantum mechanics. The first experimental validation of matter-wave behaviour was the observation of diffraction of matter by crystals1, followed by interference experiments with electrons, neutrons, atoms and molecules using gratings and Young’s double slit2,3,4,5. More recently, matter-wave manipulation has become a building block for quantum devices such as quantum sensors6 and it has an essential role in a number of proposals for implementing quantum computers7,8. Here, we demonstrate the coherent control of the spatial extent of an atomic wavefunction by reversibly stretching and shrinking the wavefunction over a distance of more than one millimetre. The quantum-coherent process is fully deterministic, reversible and in quantitative agreement with an analytical model. The simplicity of its experimental implementation could ease applications in the field of quantum transport and quantum processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.