Abstract

Radioiodine capture from nuclear fuel waste and contaminated water sources is of enormous environmental importance, but remains technically challenging. Herein, we demonstrate robust covalent organic frameworks (COFs) with antiparallel stacked structures, excellent radiation resistance, and high binding affinities toward I2, CH3I, and I3− under various conditions. A neutral framework (ACOF-1) achieves a high affinity through the cooperative functions of pyridine-N and hydrazine groups from antiparallel stacking layers, resulting in a high capacity of ~2.16 g/g for I2 and ~0.74 g/g for CH3I at 25 °C under dynamic adsorption conditions. Subsequently, post-synthetic methylation of ACOF-1 converted pyridine-N sites to cationic pyridinium moieties, yielding a cationic framework (namely ACOF-1R) with enhanced capacity for triiodide ion capture from contaminated water. ACOF-1R can rapidly decontaminate iodine polluted groundwater to drinking levels with a high uptake capacity of ~4.46 g/g established through column breakthrough tests. The cooperative functions of specific binding moieties make ACOF-1 and ACOF-1R promising adsorbents for radioiodine pollutants treatment under practical conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call