Abstract

Emerging applications of photonic integrated circuits are calling for extremely narrowband and/or low-insertion-loss bandpass filters. Both properties are limited by cavity losses or intrinsic quality factors. However, the choice of inter-cavity and bus couplings establishes trade-offs between these two properties and the passband shape, which have been little explored. Using the widely used second-order resonant system as an example, we present new, to the best of our knowledge, classes of bandpass filter shapes that provide the lowest insertion loss and the narrowest bandwidth for a given loss Q. A normalized design and novel properties based on a temporal coupled-mode theory model are presented, including a design tool to apply these results. These results may benefit loss-sensitive filtering applications such as quantum-correlated photon pair sources and RF-photonic integrated circuits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call